--- title: "KGC Data Resolution Example" author: "Nicholas R. Wheeler, Chelsey Bryant, Franz Rubel, Roger H. French" date: "`r Sys.Date()`" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{2 - KGC Data Resolution} %\VignetteEngine{knitr::rmarkdown} %\usepackage[utf8]{inputenc} --- Two differing resolutions of climate zone data have been included in this package. These can be accessed with the parameter `res` in the `RoundCoordinates()` and `LookupCZ()` functions. ## Resolution Details * Course Resolution - Distance between data points, both latitude and longitude, is 0.5 degrees. - Latitude and longitude values are rounded to the nearest value ending in either 0.25 and 0.75. * Fine Resolution - Distance between data points, in both latitude and longitude, is 100 seconds. - Data originates from a 12960 x 6480 pixel image, and coordinates are rounded to the center coordinates of the nearest pixel. ## Example - An selection of example cities worldwide, and their reported climate zones from Wikipedia, have been included in this package in the dataframe `kgcities`. - Estimated climate zones for each city from both course and fine resolution datasets are queried, and results are shown in tabular format. ```{r, message=FALSE, warning=FALSE} library("kgc") print(head(kgcities)) # Query Course Resolution data <- data.frame(kgcities, rndCoord.lon = RoundCoordinates(kgcities$lon), rndCoord.lat = RoundCoordinates(kgcities$lat)) data <- data.frame(data,CZ.c=LookupCZ(data)) colnames(data)[which(colnames(data)=='rndCoord.lon')] <- 'rndCoord.lon.course' colnames(data)[which(colnames(data)=='rndCoord.lat')] <- 'rndCoord.lat.course' # Query Fine Resolution data <- data.frame(data, rndCoord.lon = RoundCoordinates(kgcities$lon,res='fine',latlong='lon'), rndCoord.lat = RoundCoordinates(kgcities$lat,res='fine',latlong='lat')) data <- data.frame(data,CZ.f=LookupCZ(data,res='fine')) # Print Results print(data[,c(1,3,8,11)]) ```